10/3/2009

PRELIMINARY DEVELOPMENT SITE TREE SURVEY

Our Ref RBSTS3Robi1009

1.0 INTRODUCTION

The following Development Site Tree Survey was commissioned by:-

Mr Robinson

It concerns various trees around:-

Land between Moorfield Road and Romney Close, Widnes.

Prepared by David Lloyd-Jones. With over 18 years experience of arboricultural consultancy I have been supplying tree reports and surveys, including those to help guide clients through the property design and planning process, throughout that time.

I have been the chairman of the Consulting Arborist Society (CAS) continually since it started in 2003 and I am the immediate past President of the International Society of Arboriculture (UK+I Chapter) having served on the Board of Directors of that organisation since 1995.

My technical qualifications include Tech.Cert.Arbor.Assoc. (Technicians Certificate in Arboriculture Arboricultural Association 1995) as well as a range of specific technical products and competencies as delivered or recognised by CAS. I am working towards ICF membership and Chartered Arboriculturist status. I have prepared various Arboricultural papers outlining my research into the field of morphological tree evolution and it’s implications on tree understanding and modern tree management. That research is titled “Holistic Tree Management - Reduction Via Thinning” and it’s copyright dates back to 1988.

This study is a part of the planning process relating to the formal assessment of trees as suggested by BS5837 : 2005

This first stage allows for investigation of Arboricultural remedial works/removal requirements which might have influence over the proposed layout.

The early identification of the trees with the highest retention and amenity value will allow "Tree Sensitive Design" which will assist the retention of the best and most sustainable trees on the site with adequate provision of Root Protection Area (RPA) for their roots. This will minimise healthy, aesthetically valuable tree losses, (which might be deemed as “planning” losses), to accommodate development and will help to sustain amenity by design. It also involves the early elimination from the process, by the removal or management, of any hazard or otherwise defective trees. This will also allow the designer to suggest the removal of any trees with characteristics that will be in conflict with the planning proposals, or to alter his proposals to accommodate trees of good health with distinctly beneficial aspects.

The removal or modification of trees for arboricultural reasons are identified within this report.
The National Joint Utilities Guidelines booklet NJUG 10 concerns itself with providing basic
information about the practical preservation of tree roots where there is excavation planned
within the drip line of a tree. All of these documents are primary references to this report.

1.4 THE SITE

The site comprises an overgrown site within this established residential area.

1.5 HISTORICAL CONTEXT

The area is an established group of residential houses set this urban community.

The Lime trees date from before the land became disused and the Hornbeams were probably
originally a dividing hedge feature.

1.6 SUBSOIL SAMPLING AND ANALYSIS

Site specific soil samples have not been taken to sample and examine the nature of the
subsoil and consequently laboratory analysis (BS1377; Part 2) has not been carried out to
determine relative shrinkability of any substrate.

1.7 STATUTORY PROVISIONS

The Local Planning Authority will be able to identify which trees are covered by "Conservation
Area" status, or specific "Tree Preservation Orders".

2.0 REMEDIAL METHODOLOGIES / ECOLOGY

Dead wood within the crown of the tree occurs naturally and increases the environmental
significance and diversity of the tree’s plant, animal community. Removal of dead wood is
therefore only justifiable where people/property/safety is in question.

It is illegal to put a nesting bird off its nest or to remove Bat roosts and as the most
environmentally valuable trees on site are likely to be in a condition that might preclude their
retention without management we suggest that nesting boxes and roosting boxes for both
Birds and Bats be placed in the remaining trees and that any replanting include a proportion
of native “Species Rich” trees and shrubs.

2.1 EXPLANATION OF TERMS

Condition:-

Good - Describes a tree of normal vigour, with very few abnormalities and displaying
full and healthy foliage distribution.

Average - Describes a tree of normal vigour with minor abnormalities.

Poor - Describes a tree with major abnormalities, of low vigour, under stress and
considered to have a limited safe useful life expectancy.

Age Range:-

Young (Y) - Recently planted

Middle (M) - A vigorous, apically dominant (or ex-current) form of tree with
significant growth potential which has not yet achieved a high portion
of its (site specific and species specific) potential size
The removal or modification of unsuitable trees will preserve a safer environment and will also identify the areas of the site where tree protection might be concentrated during and after development in order to preserve the trees worthy of care and protection together with calculations of the RPA requirements which would usually be projected on a scale site plan.

The next stage is to consider the service routes, topographical level changes, landscaping and include the RPA and canopy distribution details accurately on a scale site layout plan. This would be accompanied by (or the plan would incorporate annotation to comprise and describe) an Arboricultural Method Statement detailing practical logistics and additional or modified tree protection measures designed to successfully preserve the trees so designated.

1.1 REPORT PROCEDURE

For the purposes of this report a total of 20 mature individual trees or groups, have been assessed from all of the trees around the site. These individuals on which I have focussed attention are the TPO'd specimens.

This assessment concerns their physiological and morphological condition as well as their ecological significance and their historical context.

The trees have marked on the plan supplied with our reference CA01 which is for tree identification purposes only.

1.2 ARBORICULTURAL SCHEDULE

This investigation catalogues individual trees includes Species, Age Range classed as :- Young (Y) - recently planted, Middle (M) - a tree with an apically dominant form (single leading shoot, generally a pointed top shape) which has yet to reach its site specific potential height, Mature (Ma) - a tree which has achieved most of its potential height and has developed a de-current shape (without a single leader, broadening and rounded shape). Over-mature - a tree which is showing distinct signs of physiological decline usually accompanied by thinning foliage and small but progressive or large structural failures (broad and disjointed canopy), Veteran (V) - A tree in decline and/or having achieved great age. These explanations of the different age class categories and what they relate to the morphology of the tree are taken from Reduction Via Thinning © David Lloyd-Jones 1996.

We also assess Height, ground clearance to first branch, Crown Spread over the four points of the compass, Diameter at Breast Height (DBH and measured at 1.5 metres from ground level), current physiological condition, current structural condition, future growth potential retention value with 1 being highly desirable and 4 highly unsuitable for retention, comments, Category Grading in accordance with BS5837:2005 Table 1 (copy attached) and finally, work requirements and recommendations.

All trees have been inspected from ground level only. Tree heights, age, crown spread and future growth potential are approximate measurements. Refer to the arboricultural schedules (attached) for full details.

1.3 REFERENCES

A range of arboricultural historical and statistical data and allied industry documentation has been referred to during the compilation of this report.

The British Standard BS5837 : 2005 concerns itself with all of the problems of developing the ground around trees and proposes guidelines intended to assist in the successful retention of high amenity value trees through the development process. Revised in 2005 it now has the status "Recommendation" rather than "Guidance".
Mature (Ma) - A tree which has achieved most of its mature height (dictated by the site specific environmental restraints) and has lost its main apical bud and as a result is beginning to, or has already established a broad de-current form typical of its species in that specific location.

Over-mature (OM) - A tree showing multiple and cumulative signs of decline, for instance cavities, deadwood, peripheral dieback, bark necrosis, internal decay broken branches, light foliage density and Chlorosis (yellowing) of the leaves all leading to the conclusion that the tree is imminently or predictably in terminal decline.

Veteran (V) - A tree of great age or in severe decline. In it's ecological zenith however and potentially very valuable as an amenity as long as the risks associated with it's retention are manageable.

Under this description of the relative age classifications of trees is taken from the practitioners version of "Reduction Via Thinning" (Copyright © David Lloyd-Jones 1995), the mature tree classification can account for the largest part of a tree's life as it is based on the trees own form and not an arbitrary fraction of the trees' total length of life. Other arbitrary age assessments make little reference to natural physiological milestones of a trees life and offer correspondingly little insight into the individual tree and its strategic progress through that life.

Retention Value:-

1 (1) - Highly desirable for retention.
2 (2) - Desirable for retention.
3 (3) - Undesirable for retention.
4 (4) - Highly undesirable for retention.

Retention value cumulatively relates to the physiological and morphological condition of the tree, it's species, size in relation to it's environment and consequently its relative suitability or unsuitability in the site and its specific circumstances.

Physiological condition:-

This relates to any disorders that are currently affecting the tree with three categories:-
"Good" - a tree with no, or insignificant diseases or infestations,
"average" - a tree with some diseases or infestations worthy of note but not currently seriously damaging the tree's health and
"poor" - a tree with significant diseases or infestations that are probably causing stress or even strain and consequential decline.

Details would be within the comments section.

Structural condition:-

This relates to any morphological/structural defects with three categories:-
"Good" - a tree with no, or insignificant defects,
"average" - a tree with some defects worthy of note and requiring some remediation
"poor" - a tree with significant defects resulting in a high probability of failure.

Details would be within the comments section.

Category Rating:-

See BS5837 : 2005 for details of how the category rating should be interpreted when considering the re-design of the site.

2.2 EXPLANATION OF METHODOLOGIES
Terravention – Release pressurised nitrogen injections to the root zone via a probe to alleviate compaction, improve drainage and if beneficial, infuse beneficial bacteria, Mycorrhizal fungi or other bio-remediation. The application of Mycorrhizal fungi in conjunction with de-compaction to compacted or deficient soils is beneficial for newly planted or existing trees as it creates a cultural medium within which the tree can grow to the limits of its capacity to assimilate the resources available to it, without forcing it to do so.

Crown Lifting – removal of a number of the lowest lateral branches to achieve either a certain clearance from the ground or a certain aesthetic effect. All achieved by removal of branches to suitable pruning points as described in various industry guidelines such as BS 3998 1989 or as modified by more recent research.

Formative pruning and dead-wooding – removal of dead damaged and or crossing branches. Also the removal of structural stresses on branches resulting from acknowledged structurally weak forms of branch junction by light thinning of foliage bearing branches if deemed necessary and the removal of specific components to achieve better form and function. All achieved by removal of branches to suitable pruning points as described in various industry guidelines such as BS 3998 1989 and as modified by more recent research. This would include pruning to accommodate the development where specific branches need to be removed to facilitate the construction process and increase light levels within the gardens.

Reduction Via Thinning - RVT the removal of a small number of primary foliage bearing branches to subtly reduce and thin the canopy, reducing wind resistance giving the roots trunk and structural branches a mechanical advantage while retaining the shape, functionality and, most importantly, the character of the tree. Concentrating on and limited to the removal of small percentages of the foliage bearing branches to maintain metabolism while removing no structural elements (usually developed before the loss of the apical bud's dominance) of the tree. All achieved by removal of branches to suitable pruning points as described in various industry guidelines such as BS 3998 1989 and as modified by more recent research. We usually express this specification as a small percentage of the foliage, typically less than 20%. This is subtle and progressive tree management, which is sympathetic to the trees health and growth requirements. Copyright © David Lloyd-Jones 1995

"Reduction Via Thinning" as an Alternative to Pollarding, the removal of a portion of primary foliage bearing branches to subtly reduce and thin the canopy, reducing wind resistance giving the roots trunk and structural branches a mechanical advantage while retaining the shape and character of the tree. Concentrating on and limited to the removal of significant percentages of the foliage bearing branches.

As an alternative to pollarding, as much as 40 - 60% of the primary branches need to be removed at one time, to create conditions that encourage the formation of new branches from the original pollard points, as a lighter pruning might only invigorate the remaining secondary branches, without producing the re-growth from the pollard point that would be necessary to allow the repetition of this specification. We usually express this specification as a percentage of the foliage of up to 70 %. Copyright © David Lloyd-Jones 27.08.97

Pollarding – removal of all portions of a tree beyond a previously created lopping point, preserving the pollard stump as a point from which regeneration will most readily occur. This is not "Lopping and Topping" which has no place in the modern Arboriculturalist's catalogue!

2.3 APPLICATION OF THE METHODOLOGIES

All of the specifications above are listed in increasing severity from the most sympathetic to the least sympathetic although it should be noted that properly managed pollards can be the most long lived and constant components of the landscape in positions that would not allow their retention to full size while maintaining a perceived acceptable level of risk and thereby adequately dispatch the landowners duty of care.

Trees and especially groups of trees are not static features but develop and change in their nature, appearance and structural integrity as they progress through their age classifications.
As such in an urban environment they must be managed pro-actively and can, by their significant potential to adapt to subtle and progressive changes, be adapted and successfully incorporated into a changing local environment.

That local environment, when talking about a tree in close proximity to a dwelling or a public open space, is the human context. Within that subjective context a tree is either an asset, and a TPO placed on such trees a benefit to all including the owner, or it is a liability, and a TPO placed on such a tree an imposition on the owner and/or adjacent landowners.

Therefore any realistic protective measures designed to preserve the long term tree cover should ideally not focus too closely on individual trees but on actively recycling the tree cover in the historical sense and providing designed space for their inclusion. Tree preservation that is sympathetic to the tree owner’s perspective is likely to be the most sustainable kind.

Good management should be seen as preserving this system and allowing designated designed space for the continued inclusion of trees but does involve the necessary pruning or removal of trees in certain instances where their age, condition or species characteristics and the scale of local changes proposed by the development, dictate.

2.4 HEDGEROWS

Hedgerows are valuable ecosystems, which can easily be retained or established within designs. They provide shelter, breeding sites and food sources for a wide range of wild animals, birds and insects, improving the biodiversity and interest of a site as well as defining boundaries and reinforcing security and ergonomics.

Where supplementary planting is required or where new hedges are planned I would suggest that Native “Species Rich” hedgerows with component species dictated in some measure by the existing mix of species established on the site. These could provide cost effective boundaries, valuable ecology and aesthetic impact.

2.5 OLD ORCHARDS

Old or traditional orchards are now designated “UK Priority Habitat”, as determined by the Joint Nature conservation Committee. This means that they have high ecological habitat status of national importance similar to SSSIs.

The ecology and diversity of species associated with old orchards means that their assessment, treatment and management are best undertaken by appropriate Orchard specialists.

3.0 REMEDIAL WORKS/TREE REMOVAL/MONITORING

Remedial Works including considerations: Tree no’s and 18.

Tree Removal including trees under consideration for removal: 3, 6, 7, 9, 13, 14, 15, 16 & 20.

All of the trees will require further monitoring through the development process, in the future and as any other environmental or physiological changes become apparent.

Within the context of property development, this monitoring can take the form of formal Arboricultural site supervision through the development process if that is deemed necessary by the local planning authority.
3.1 Monitoring:

"Arboricultural site supervision", or, random and unannounced periodic monitoring by an Arboriculturist of all of the large trees on site to check tree protection measures stipulated in the planning permission are being adhered to and to assess the significance of any physiological or environmental changes occurring during the development process and beyond, is recommended.

3.2 QUALITY OF CRAFTSMANSHIP

When appointing a Tree Surgeon, please use only properly qualified and experienced companies and always check that they carry Public and Products Liability Insurance with a minimum of £2 million cover and the relevant Employers Liability Insurance.

3.3 LIMITING CONDITIONS / DISCLAIMERS

Unless stated otherwise:

1) Information contained in this report covers only those trees that were examined and reflects the condition of those trees at the time of the inspection.
2) The inspection is limited to visual examination of the subject trees from ground level only and without aerial inspection, dissection, excavation, probing or imaging. There is no warranty or guarantee, expressed or implied that problems or deficiencies of the subject trees may not exist or arise in the future.
3) All trees mentioned in this report should be reviewed periodically to assess the significance and impact of any physiological and/or environmental changes.

3.4 ROOT PROTECTION AREA TABLE (RPA)

BS5837:2005 makes clear recommendations for the provisions that should be made for an area to be set aside and protected so that the tree roots in that area are preserved.

In this instance the area's calculated from the sizes of the trees (suitable for retention) are laid out below in square metres. These areas equate approximately to a circle of radius 12 x the trunk diameter or in the case of multiple stemmed trees, 10 x the trunk diameter measured just above the basal flare of the trunk.

<table>
<thead>
<tr>
<th>Tree</th>
<th>Area Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, 5, 6, 13 & 14</td>
<td>72 sq M or square 9M or circle of radius 4.8M</td>
</tr>
<tr>
<td>T2, 9, 17 & 18</td>
<td>55 sq M or square 7M or circle of radius 4.2M</td>
</tr>
<tr>
<td>T3, 4 & 8</td>
<td>163 sq M or square 13M or circle of radius 7.7M</td>
</tr>
<tr>
<td>T7 & 12</td>
<td>28 sq M or square 5M or circle of radius 3M</td>
</tr>
<tr>
<td>T10, 11, 15 & 16</td>
<td>41 sq M or square 6M or circle of radius 3.6M</td>
</tr>
<tr>
<td>T19</td>
<td>7 sq M or square 3M or circle of radius 1.5M</td>
</tr>
<tr>
<td>T20</td>
<td>92 sq M or square 10M or circle of radius 5.4M</td>
</tr>
</tbody>
</table>

These distances and areas of enclosed RPA will have to be plotted on a topographical survey that picks up the tree trunks, as datum points for each tree intended for retention.

See BS 5837 : 2005 for full details of how these RPA figures should be applied and how that application can be strategically modified on the Tree Constraints Plan (TCP) subject to negotiation with the tree or planning officer representing the LPA.

4.0 OVERALL CONCLUSIONS

The trees mentioned in this report, stand around the proposed development site. The specific works required and the reasons are outlined in the tabular tree data (attached).
The position of the TPO trees can be determined by referring to Plan No. CA/01 attached which is for tree identification purposes only.

Those works are justified by reasons associated with the condition of the trees and good management rather than strategic issues related to the sighting of the proposed building.

I have seen no documents implying that any new service trenches will be brought onto the site to service any of the proposed design elements. If any works are proposed within the RPA then their design and implementation will have to be considered and prescribed so that the Local Authority agree to these strategic amendments to the PRA requirements.

Any trees and especially any large trees in this garden the adjoining grounds or on the roadside are ultimately the responsibility of their respective owners and once they have seen a copy they should consider the information contained within this report, periodically get their trees professionally assessed and check that they have adequate insurance to cover their liabilities in the event of claims arising from the direct or indirect actions of their trees on their neighbours or members of the public and/or their property.

The trees respective owners should in any event apply good management practice to pass off their duty of care and respond to any risks that they become aware of in order to minimise the risk that their trees represent to their neighbours or members of the public.

Once the final, negotiated RPA requirements are plotted together with the tree identification details on the plan CA/01 then the impact of the properties and build logistics on the trees roots can be assessed against the guidelines given by BS5837:2005.

The trees which are the primary subjects of this report will need some consideration and forethought to retain them unscathed through the development process especially where they will be in close proximity to the development or its infrastructure.

The RPA requirements will need to be considered in order to determine which trees can be successfully retained and which will have to be removed.

Young trees of whatever species generally have greater capacity to accommodate and survive environmental changes than mature trees. If the mature trees that I have identified for consideration of removal are replaced with carefully chosen young replacements, they will grow into the redesigned environment and hopefully compliment the design.

Significant consideration to the rooting environment is required and designs of surface treatments should be sympathetic to the continuity of the rooting environment of any trees where the full RPA requirement can not be accommodated, if those trees are retained through the development process.

Any trees are retained then strategic tree preservation is likely to be achieved as long as BS5837:2005, NJUG 10 or other guidelines based on more recent research are followed rigorously throughout and beyond the development process in conjunction with arboricultural site supervision, formal verification of tree protective measures and well communicated and accepted penalties for breaches of those protection measures within the organisation undertaking the development on site.

Trees retained and protected in accordance with BSI and allied industry guide lines, construction methods and surface treatments sympathetic to the needs of the trees should ensure sustained amenity and conservation values to the site by providing long term tree cover. Protecting the rooting environment during development is of primary importance.

Copyright © 10/3/2009

David Lloyd-Jones Tech Cert Arbor Assoc
ARBORICULTURAL SCHEDULE NO. 3.

**RBST

Client: Mr Robinson
Site: Land between Moorfield Road and Romney Close Widness
Date of survey: 10/03/2009

Tree Numbers marked on site plan: (Ref CA/01)
Weather: sunny

<table>
<thead>
<tr>
<th>NO.</th>
<th>SPECIES</th>
<th>AGE class</th>
<th>Height (H) m</th>
<th>Crown clearance (C) over ground m</th>
<th>DBH mm @ 1.5m</th>
<th>Crown Spread</th>
<th>Future Growth Potential</th>
<th>Physiological Condition</th>
<th>Structural Condition</th>
<th>Retain value 1- high 4 - low</th>
<th>Comments (including structural condition, physiological condition, preliminary management recommendations, further investigation if required and estimated remaining contribution in years)</th>
<th>Category Grading</th>
<th>Works required or recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Lime</td>
<td>Ma</td>
<td>H16 C5</td>
<td>400</td>
<td>N5 E0 S5 W5</td>
<td>high</td>
<td>good</td>
<td>good</td>
<td>1</td>
<td>This tree leans out over the pavement and road due to competition from T2 and 3. No obvious significant defects</td>
<td>A1</td>
<td>Consider removal</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Lime</td>
<td>Ma</td>
<td>H16 C1</td>
<td>350</td>
<td>N3 E2 S6 W3</td>
<td>high</td>
<td>good</td>
<td>good</td>
<td>1</td>
<td>This tree has a small cavity at 2m and a narrow crown due to competition from T1 and 3. No significant defects</td>
<td>A1</td>
<td>Consider removal</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Lime</td>
<td>Ma</td>
<td>H20 C5</td>
<td>600</td>
<td>N7 E6 S5 W5</td>
<td>high</td>
<td>good</td>
<td>Average/poor</td>
<td>2/3</td>
<td>This tree dominates the group but has a large wound from ground level to 2.5M (see photo) with evidence of internal decay behind the dried out exposed timber. While pruning would reduce structural stresses, I do not advise retaining such a large and potentially structurally compromised tree</td>
<td>C1</td>
<td>Consider removal</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Lime</td>
<td>Ma</td>
<td>H20 C2</td>
<td>600</td>
<td>N5 E2 S6 W7</td>
<td>High</td>
<td>good</td>
<td>good</td>
<td>1</td>
<td>No obvious defects</td>
<td>A1</td>
<td>Consider removal</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Lime</td>
<td>Ma</td>
<td>H16 C2</td>
<td>400</td>
<td>N4 E4 S6 W6</td>
<td>high</td>
<td>good</td>
<td>good</td>
<td>1</td>
<td>No obvious defects</td>
<td>A1</td>
<td>Consider removal</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Cherry</td>
<td>Ma</td>
<td>H12 C2</td>
<td>400</td>
<td>N4 E4 S6 W6</td>
<td>medium</td>
<td>average</td>
<td>good</td>
<td>2</td>
<td>This tree shows signs of being infected with a bacterial canker which will make it susceptible to a range of other pathogens and may contribute to a spiral of decline</td>
<td>C1</td>
<td>Consider removal or monitor</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>SPECIES</td>
<td>AGE class</td>
<td>Height (H) m</td>
<td>Crown clearance (C) over ground m</td>
<td>DBH mm</td>
<td>Crown Spread N-north</td>
<td>Future Growth Potential</td>
<td>Physiological Condition</td>
<td>Structural Condition</td>
<td>Retain value 1- high</td>
<td>Comments (including structural condition, physiological condition, preliminary management recommendations, further investigation if required and estimated remaining contribution in years)</td>
<td>Category Grading</td>
<td>Works required or recommended</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>--</td>
<td>---------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>07</td>
<td>Cherry</td>
<td>Ma</td>
<td>H10 C2</td>
<td>250</td>
<td>N4</td>
<td>E4</td>
<td>S2</td>
<td>W2</td>
<td>medium</td>
<td>average</td>
<td>This tree shows signs of being infected with a bacterial canker which may make it susceptible to a range of other pathogens and may contribute to a spiral of decline. It also has a narrow fork at 1.5m giving rise to 3 co-dominant leaders</td>
<td>C1</td>
<td>Consider removal or monitor</td>
</tr>
<tr>
<td>08</td>
<td>Lime</td>
<td>Ma</td>
<td>H18 C2</td>
<td>600</td>
<td>N6</td>
<td>E3</td>
<td>S4</td>
<td>w5</td>
<td>high</td>
<td>good</td>
<td>No obvious defects</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Oak</td>
<td>Ma</td>
<td>H10 C4</td>
<td>350</td>
<td>N4</td>
<td>E10</td>
<td>S1</td>
<td>w0</td>
<td>high</td>
<td>good</td>
<td>This tree leans to the east through competition with T8. As a result it has a severe imbalance which causes it to lean over the adjacent property. As this will only get worse I suggest that removal be considered</td>
<td>C1</td>
<td>Consider removal</td>
</tr>
<tr>
<td>10</td>
<td>Hornbeam</td>
<td>Ma</td>
<td>H16 C3</td>
<td>300</td>
<td>N3</td>
<td>E4</td>
<td>S1</td>
<td>w2</td>
<td>high</td>
<td>good</td>
<td>This tree has a fork at 2m giving rise to 2 co-dominant leaders and then forks again at 4m giving rise to 6 co-dominant leaders.</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Hornbeam</td>
<td>Ma</td>
<td>H16 C4</td>
<td>300</td>
<td>N0</td>
<td>E3</td>
<td>S2</td>
<td>w0</td>
<td>high</td>
<td>good</td>
<td>This tree leans slightly to the east but has no significant defects</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Hornbeam</td>
<td>Ma</td>
<td>H16 C5</td>
<td>250</td>
<td>N1</td>
<td>E4</td>
<td>S3</td>
<td>w0</td>
<td>high</td>
<td>good</td>
<td>This tree is narrow like the rest of the group of Hornbeams (through intense competition) but has no significant defects</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Hornbeam</td>
<td>Ma</td>
<td>H17 C3</td>
<td>400</td>
<td>N2</td>
<td>E5</td>
<td>S2</td>
<td>W4</td>
<td>high</td>
<td>average</td>
<td>This tree has been hit by lightening and has a wound running from ground to 10m. It is wide open to decay</td>
<td>C1</td>
<td>Remove due to condition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Age Class</th>
<th>Height (ft) m</th>
<th>Crown Clearance (C) over ground m</th>
<th>DBH</th>
<th>Crown Spread</th>
<th>Future Growth Potential</th>
<th>Physiological Condition</th>
<th>Structural Condition</th>
<th>Retain value 1=high 4=low</th>
<th>Comments (including structural condition, physiological condition, preliminary management recommendations; further investigation if required and estimated remaining contribution in years</th>
<th>Category Grading</th>
<th>Works required or recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Hornbeam</td>
<td>Ma</td>
<td>H17 C4</td>
<td>400</td>
<td></td>
<td>N2 E5 S2 W4</td>
<td>high</td>
<td>average</td>
<td>poor</td>
<td>3</td>
<td>This tree has been hit by lightening and has a wound running from ground to 10m. It is wide open to decay.</td>
<td>C1</td>
<td>Remove due to its condition</td>
</tr>
<tr>
<td>15</td>
<td>Hornbeam</td>
<td>Ma</td>
<td>H16 C2</td>
<td>300</td>
<td></td>
<td>N2 E1 S2 W4</td>
<td>high</td>
<td>poor</td>
<td>poor</td>
<td>4</td>
<td>This tree has extensive decay at a fork at 1.5m which has partially failed.</td>
<td>R</td>
<td>Remove immediately</td>
</tr>
<tr>
<td>16</td>
<td>Hornbeam</td>
<td>Ma</td>
<td>H10 C3</td>
<td>300</td>
<td></td>
<td>N1 E2 S2 W4</td>
<td>high</td>
<td>poor</td>
<td>poor</td>
<td>4</td>
<td>Almost fallen and extensively decayed. Close to boundary fence. remove.</td>
<td>R</td>
<td>Remove immediately</td>
</tr>
<tr>
<td>17</td>
<td>Lime</td>
<td>Ma</td>
<td>H14 C4</td>
<td>350</td>
<td></td>
<td>N1 E4 S4 W4</td>
<td>high</td>
<td>good</td>
<td>good</td>
<td>1</td>
<td>No significant defects</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Lime</td>
<td>Ma</td>
<td>H16 C4</td>
<td>350 x2</td>
<td></td>
<td>N4 E7 S2 W4</td>
<td>high</td>
<td>good</td>
<td>average</td>
<td>2</td>
<td>This tree has two leaders rising from a low acute fork. The leaders cross and rub at various points. It may be possible to remove 1 leader to leave the tree a single stem form.</td>
<td>B1</td>
<td>Consider pruning to remove 1 leader</td>
</tr>
<tr>
<td>19</td>
<td>Cherry</td>
<td>Ma</td>
<td>H8 C2</td>
<td>100 x2</td>
<td></td>
<td>N2 E5 S2 W1</td>
<td>medium</td>
<td>average</td>
<td>good</td>
<td>2</td>
<td>This tree has evidence of bacterial canker which will make it susceptible to a range of pathogens.</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Lime</td>
<td>Ma</td>
<td>H16 C3</td>
<td>450</td>
<td></td>
<td>N4 E5 S9 W4</td>
<td>high</td>
<td>good</td>
<td>poor</td>
<td>4</td>
<td>This tree has an acute fork at 10m with a propagating stress crack extending approx 1.5m below the fork. This is extremely likely to loose one or other side of the tree in the next strong winds and the resulting branch loss could fall in the road or third party grounds.</td>
<td>R</td>
<td>Remove immediately</td>
</tr>
</tbody>
</table>
Table 1 — Cascade chart for tree quality assessment

<table>
<thead>
<tr>
<th>TREES FOR REMOVAL</th>
<th>Category and definition</th>
<th>Criteria</th>
<th>Identification on plan</th>
</tr>
</thead>
</table>
| Category R | Those in such a condition that any existing value would be lost within 10 years and which should, in the current context, be removed for reasons of sound arboricultural management | * Trees that have a serious, irremediable, structural defect, such that their early loss is expected due to collapse, including those that will become unviable after removal of other R category trees (i.e. where, for whatever reason, the loss of companion shelter cannot be mitigated by pruning)
* Trees that are dead or are showing signs of significant, immediate, and irreversible overall decline
* Trees infected with pathogens of significance to the health and/or safety of other trees nearby (e.g. Dutch elm disease), or very low quality trees suppressing adjacent trees of better quality | DARK RED |

<table>
<thead>
<tr>
<th>TREES TO BE CONSIDERED FOR RETENTION</th>
<th>Category and definition</th>
<th>Criteria — Subcategories</th>
<th>Identification on plan</th>
</tr>
</thead>
</table>
| Category A | Those of high quality and value; in such a condition as to be able to make a substantial contribution (a minimum of 40 years is suggested) | 1 Mainly arboricultural values
Trees that are particularly good examples of their species, especially if rare or unusual, or essential components of groups, or of formal or semi-formal arboricultural features (e.g. the dominant and/or principal trees within an avenue) | LIGHT GREEN |
| Category B | Those of moderate quality and value; those in such a condition as to make a significant contribution (a minimum of 20 years is suggested) | 2 Mainly landscape values
Trees present in numbers, usually as groups or woodlands, such that they form distinct landscape features, thereby attracting a higher collective rating than they might as individuals but which are not, individually, essential components of formal or semi-formal arboricultural features (e.g. trees of moderate quality within an avenue that includes better, A category specimens), or trees situated mainly internally to the site, therefore individually having little visual impact on the wider locality | MID BLUE |
| Category C | Those of low quality and value; currently in adequate condition to remain until new planting could be established (a minimum of 10 years is suggested), or young trees with a stem diameter below 150 mm | 3 Mainly cultural values, including conservation
Trees present in groups or woodlands, but without this conferring on them significantly greater landscape value, and/or trees offering low or only temporary screening benefit | GREY |

NOTE: Whilst C category trees will usually not be retained where they would impose a significant constraint on development, young trees with a stem diameter of less than 150 mm should be considered for relocation.
TreeAdvice.com
Cheshire Arboriculture
Land Between Moorfield Road and Romney Close, Widness
Ref: RBSTS3RobI1009
The view from Moorfield Road

T3 large wound with decay

View From Moorfield Road approaching from the North

View from Romney Close

T20 acute (& split) fork